Auf einen Blick
- Aufgaben: Forschung und Entwicklung innovativer Ansätze zur Verbesserung von KI-Modellen.
- Arbeitgeber: Aleph Alpha ist ein führendes Unternehmen für KI-Innovation mit Fokus auf zugängliche GenAI-Anwendungen.
- Mitarbeitervorteile: 30 Tage Urlaub, öffentliche Verkehrsmittelzuschuss, flexible Arbeitszeiten und hybride Arbeitsmodelle.
- Warum dieser Job: Werde Teil einer AI-Revolution und arbeite an bahnbrechenden Projekten in einem dynamischen Team.
- GewĂĽnschte Qualifikationen: Master-Abschluss in Informatik oder Mathematik, Kenntnisse in Deep Learning und Python.
- Andere Informationen: Möglichkeit zur Veröffentlichung eigener Forschungsergebnisse und Zusammenarbeit mit Experten.
Das voraussichtliche Gehalt liegt zwischen 36000 - 60000 € pro Jahr.
Join to apply for the PhD Fellowship (LLM Architecture Optimization) (f/m/d) role at Aleph Alpha
Join to apply for the PhD Fellowship (LLM Architecture Optimization) (f/m/d) role at Aleph Alpha
Aleph Alpha Research’s mission is to deliver category-defining AI innovation that enables open, accessible, and trustworthy deployment of GenAI in industrial applications. Our organization develops foundational models and next-generation methods that make it easy and affordable for Aleph Alpha’s customers to increase productivity in development, engineering, logistics, and manufacturing processes.
We are looking to grow our academic partnership “Lab1141” with TU Darmstadt and our GenAI group of PhD students supervised by Prof. Dr. Kersting. We are looking for an enthusiastic researcher at heart, passionate to improve foundational, multi-modal NLP models, and aiming to obtain a PhD degree in a three-year program. On average you will spend half of your time at Aleph Alpha Research in Heidelberg, and the other half at the Technical University of Darmstadt, which is close-by to travel.
As a PhD fellow in Aleph Alpha Research, you develop new approaches to improve the foundational model architecture and applications. You are given a unique research environment with sufficient amount of compute and both industrial and academic professional supervisors to conduct and publish your research.
Please outline your potential PhD research topic in your application letter , covering aspects like your motivation, the core research questions you\’d like to explore, your proposed approach and evaluation strategy.
While at Aleph Alpha Research, for the LLM Architecture topic, you will be working with our Foundational Models team , in which you create powerful state-of-the art, multi-modal, foundational models, research and share novel approaches to pre-training, fine-tuning, and helpfulness, and enable cost-efficient inference on a variety of accelerators.
Topic
Introduction
Foundation models are central to many of the most innovative applications in deep learning, predominantly utilize self-supervised learning, autoregressive generation, and transformer architecture. However, the learning paradigm and architecture come with several challenges. To address these limitations and improve both accuracy and efficiency in generation and downstream tasks, it is essential to consider adjustments to its core paradigms. These include the sourcing and composition of training data, design choices of the training itself and the underlying model architecture. Further, extensions of the system, such as Retrieval-Augmented Generation (RAG), and changes to foundational components like tokenizers should be considered.
Related Work
The training data of LLMs is at the core of a model’s downstream capabilities. Consequently, recent works focus on extracting high-quality data from large corpora (LLama-3, Olmo-1.7). Additionally, the order and structure in which the data is presented to the model have a large influence on model performance, as demonstrated by curriculum learning approaches (Olmo-1.7, Ormazabal et al., Mukherjee et al) and more sophisticated data packing algorithms (Staniszewski et al., Shi et al).
Similarly, adjustments to the training procedures itself have shown promising results. For example, Ibrahim et al. discuss “infinite” learning rate schedules that allow for more flexibility in adjusting training steps and facilitate continual-pretraining tasks more easily.
Further, the LLM architecture and its components leave room for improvement. Ainslie et al. introduce grouped-query attention (GQA) which increases the efficiency of the transformer’s attention component. Liu et al make changes to the rotary position embeddings to improve long-context understanding.
Recently, structured state-space sequence models (SSMs) (Gu et al., Poli et al.) and hybrid architectures have emerged as promising class of architectures for sequence modeling.
Lastly, the model itself can be embedded in a larger system such as RAG. For example, in-context learning via RAG enhances the generation’s accuracy and credibility (Gao et al.), particularly for knowledge-intensive tasks, and allows for continuous knowledge updates and integration of domain-specific information.
Goals
This project aims to explore novel LLM-system architectures, data, and training paradigms that could either replace or augment traditional autoregressive generation and transformer components, as well as enhance auxiliary elements such as retrievers and tokenizers.
Your Responsibilities
- Research and development of novel approaches and algorithms that improve training, inference, interpretations or applications of foundational models
- Analysis and benchmarking of state-of-the art as well as new approaches
- Collaborating with scientists and engineers at Aleph Alpha and Aleph Alpha Research, plus chosen external industrial and academic partners
- In particular, fruitful interactions with our group of GenAI PhD students and fostering exchange between Aleph Alpha Research and your university
- Publishing own and collaborative work on machine learning venues, and making code and models source-available for use by the broader research community
Your Profile
- Masters Degree in Computer Science, Mathematics or similar
- Solid understanding of DL/ML techniques, algorithms, and tools, for training and inference
- Experience and knowledge of Python and at least one common deep-learning framework, preferably PyTorch
- Ready to relocate to region Heidelberg/ Darmstadt, Germany
- Interest to bridge the gap between addressing practical industry challenges and contributing to academic research
- Ambition to obtain a PhD in generative machine learning, in a three-year program
Our tenets
We believe embodying these values would make you a great fit in our team:
- We own work end-to-end, from idea to production: You take responsibility for every stage of the process, ensuring that our work is complete, scalable, and of the highest quality.
- We ship what matters: Your focus is on solving real problems for our customers and the research community. You prioritize delivering impactful solutions that bring value and make a difference.
- We work transparently: You collaborate and share your results openly with the team, partners, customers, and the broader community through publishing and sharing results and insight including blogposts, papers, checkpoints, and more.
- We innovate through leveraging our intrinsic motivations and talents: We strive for technical depth and to balance ideas and interests of our team with our mission-backwards approach, and leverage the interdisciplinary, diverse perspectives in our teamwork.
What You Can Expect From Us
- Become part of an AI revolution!
- 30 days of paid vacation
- Public transport subsidy
- Fitness and wellness offerings (Wellhub)
- Mental health platform (nilo.health)
- Share parts of your work via publications and source-available code
- Flexible working hours and hybrid working model
Seniority level
-
Seniority level
Internship
Employment type
-
Employment type
Temporary
Job function
-
Job function
Research, Analyst, and Information Technology
-
Industries
Technology, Information and Internet
Referrals increase your chances of interviewing at Aleph Alpha by 2x
PhD Position – Research in Neurodevelopmental Disorders (m/f/d)
Postdoc – Research in Neurodevelopmental Disorders (m/f/d)
Limburgerhof, Rhineland-Palatinate, Germany 2 months ago
Scientist I – Analytical Expert Genetic Medicine Drug Product Development (all genders) (fulltime, permanent)
Scientist Formulation Development (m/w/d)
Scientist, Physician, MTA, BTA, CTA (m/f/d) for the evaluation of proficiency tests
Postdoctoral researcher for the Heidelberg Institute of Global Health (m/f/d)
Postdoctoral researcher for the Heidelberg Institute of Global Health (m/f/d)
Associate or Senior Editor (Immunology), Nature Communications
Analytical Scientist I – Small Molecule Analytical R&D (all genders) (Vollzeit, unbefristet)
Research Scientist Concrete Technology (f/m/d)
Professor for International Business Administration f/m/d
Product Marketing Manager – Advanced Microscopy Solutions
Associate Director EU, Gene Therapy Delivery- CNS
Director for Center of Excellence Clinical Research
Graduate Program – START IN Finance & Controlling with focus Finance (m/f/d)
Senior Scientist I / Project Manager, Pharmaceutical Development Combination Products (all genders) (full-time, permanent)
Senior IP Counsel – Biochemistry & Imaging Technologies (m/f/d)
Leiter (w/m/d) der Core Facility „Tumormodelle“ / Head of the Core Facility \“Tumor Models\“
Senior IP Counsel – Biochemistry & Imaging Technologies (m/f/d)
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
#J-18808-Ljbffr
PhD Fellowship (LLM Architecture Optimization) (f/m/d) Arbeitgeber: Aleph Alpha

Kontaktperson:
Aleph Alpha HR Team
StudySmarter Bewerbungstipps 🤫
So bekommst du den Job: PhD Fellowship (LLM Architecture Optimization) (f/m/d)
✨Tip Nummer 1
Nutze Networking-Plattformen wie LinkedIn, um mit aktuellen und ehemaligen Mitarbeitern von Aleph Alpha in Kontakt zu treten. Stelle Fragen zu ihrer Erfahrung im Unternehmen und zeige dein Interesse an der PhD-Stelle.
✨Tip Nummer 2
Besuche relevante Konferenzen oder Workshops im Bereich maschinelles Lernen und KI. Dort kannst du nicht nur dein Wissen erweitern, sondern auch wertvolle Kontakte knüpfen, die dir bei deiner Bewerbung helfen können.
✨Tip Nummer 3
Engagiere dich in Online-Communities oder Foren, die sich mit LLMs und NLP beschäftigen. Teile deine Ideen und Projekte, um deine Sichtbarkeit zu erhöhen und potenzielle Mentoren oder Unterstützer zu finden.
✨Tip Nummer 4
Bereite dich auf mögliche Interviews vor, indem du aktuelle Trends und Herausforderungen im Bereich der LLM-Architektur recherchierst. Zeige, dass du über die neuesten Entwicklungen informiert bist und bereit bist, innovative Lösungen zu entwickeln.
Diese Fähigkeiten machen dich zur top Bewerber*in für die Stelle: PhD Fellowship (LLM Architecture Optimization) (f/m/d)
Tipps für deine Bewerbung 🫡
Forschung betreiben: Beginne mit einer grĂĽndlichen Recherche ĂĽber Aleph Alpha und deren Forschungsprojekte. Informiere dich ĂĽber die spezifischen Anforderungen der PhD-Stelle und die aktuellen Entwicklungen im Bereich der LLM-Architektur.
Motivationsschreiben verfassen: In deinem Bewerbungsschreiben solltest du dein potenzielles Forschungsthema klar umreißen. Erkläre deine Motivation, die zentralen Forschungsfragen, die du untersuchen möchtest, sowie deinen vorgeschlagenen Ansatz und die Evaluierungsstrategie.
Lebenslauf aktualisieren: Stelle sicher, dass dein Lebenslauf aktuell ist und alle relevanten Erfahrungen, Fähigkeiten und Qualifikationen enthält. Betone insbesondere deine Kenntnisse in Deep Learning, Machine Learning und Programmierung mit Python.
Dokumente überprüfen: Bevor du deine Bewerbung einreichst, überprüfe alle Dokumente auf Vollständigkeit und Richtigkeit. Achte darauf, dass alle geforderten Unterlagen, wie Zeugnisse und Empfehlungsschreiben, beigefügt sind.
Wie du dich auf ein Vorstellungsgespräch bei Aleph Alpha vorbereitest
✨Bereite deine Forschungsfragen vor
Stelle sicher, dass du deine potenziellen Forschungsfragen klar und präzise formuliert hast. Dies zeigt dein Engagement und deine Fähigkeit, über die Anforderungen hinaus zu denken.
✨Verstehe die Technologien
Mach dich mit den neuesten Entwicklungen in der KI und den spezifischen Technologien, die Aleph Alpha verwendet, vertraut. Zeige während des Interviews, dass du die Herausforderungen und Möglichkeiten in der LLM-Architektur verstehst.
✨Zeige deine Teamfähigkeit
Da die Zusammenarbeit mit anderen Wissenschaftlern und Ingenieuren ein wichtiger Teil der Rolle ist, betone deine Erfahrungen in der Teamarbeit und wie du zur Förderung eines produktiven Austauschs beitragen kannst.
✨Sei bereit für technische Fragen
Erwarte technische Fragen zu Deep Learning und den verwendeten Algorithmen. Bereite dich darauf vor, deine Kenntnisse ĂĽber Python und Frameworks wie PyTorch zu demonstrieren, um deine Eignung fĂĽr die Position zu unterstreichen.